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The Onset of Taylor-Gortler Vortices in Impulsively Decelerating Swirl Flow

Min Chan Kim " and Chang Kyun Choi*

Department of Chemical Engineering, Cheju National University, Cheju 690-756, Korea
*School of Chemical Engineering, Seoul National University, Seoul 151-744, Korea
(Received 24 September 2003 « accepted 25 April) 2004

Abstract—The onset of hydrodynamical instability induced by impulsive spin-down to rest in a cylinder containing
a Newtonian fluid is analyzed by using propagation theory. It is well-known that the primary transient swirl flow is
laminar, but with initial high velocities secondary motion sets in at a certain time. The dimensionless critizal time
to mark the onset of instability is presented here as a function of the Reynolds number Re. Available experimental data
indicate that for large Re deviation of the velocity profiles from their momentum diffusion occurs starting from a certain
time 1=41.. This means that secondary motion is detected at this characteristic time. It seems evident that during
1.<1<41,, secondary motion is relatively very weak and the primary diffusive momentum transfer is dominant.
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INTRODUCTION imum-Taylor-number criterion is the simplest one, it seems to lack
physical insights. These models take advantage of the similarity

It is well-known that in the primary laminar flows along con- between Taylor instability and Rayleigh-Bénard instability.
cavely curved walls, the destabilizing action of the centrifugal forces Another model to analyze time-dependent convective instability
can produce secondary motion in the form of vortices. The relategiroblems is propagation theory [Choi et al., 1998; Kim et al., 2002],
hydrodynamical instabilities usually lead to Taylor vortices in the which deals with thermal instability problems of developing, non-
flow between rotating concentric cylinders or Gortler ones in thelinear temperature profiles in rapidly heated systems. In propagation
boundary layer flow. The instability problem of transient laminar theory, any kind of arbitrariness such as the initial conditions and
swirl flow in a cylinder is closely related to that of Taylor-Gortler the criterion to define detection of manifest convection and severe
vortices. The onset of instability caused by spin-down, when a ro€alculation burden is not required. Therefore, propagation theory
tating liquid-filled cylinder is suddenly brought to rest, was first in- can be said to be a deterministic and relatively simple method. This
vestigated experimentally by Euteneuer [1972]. The initial laminarmodel assumes that at ti#ffinitesimal temperature disturbances
flow evolves into a secondary flow pattern which consists of a serieare propagated mainly within the thermal penetration demthd
of Taylor-like vortices. This kind of secondary flow plays an impor- with this length scaling factor all the variables and parameters hav-
tant role in mixing in a vertical Bridgman crystal growth system ing the length scale are rescaled. In a usual deep-pool conduction
where the crucible is rotated to improve mixing [Yeckel and Derby,system of\,[]./at, the most important parameter becomes the time-
2000]. In this transient boundary-layer system the critical fitoe t  dependent Rayleigh number, which is yielded by replacing the length
mark the onset of secondary motion becomes an important questioscale in the Rayleigh number with Herea is the thermal diffusiv-

A related instability analysis has been conducted by using théy. The resulting stability criteria have compared well with experi-
energy method [Neitzel and Davis, 1980; Neitzel, 1982a] and alsmental data of various systems such as solidification [Hwang and
by employing direct numerical simulation [Neitzel and Davis, 1981]. Choi, 1996], Marangoni-Benard convection [Kang and Choi, 1997;
A similar stability problem, where a fluid is filled between the two Kang et al., 2000] and Benard convection in porous media [Yoon
concentric cylinders and the rotation of the inner cylinder is impul-and Choi, 1989].
sively started from rest, i.e., the spin-up problem, has been ana- Here we will extend the propagation theory, which has been em-
lyzed by the amplification theory [Chen and Kirchner, 1971], the ployed to analyze time-dependent diffusive problems, to the hydro-
frozen-time model [Chen and Kirchner, 1971], the energy methoddynamical instability induced by an aforementioned impulsively-
[Neitzel, 1982b] and the maximum-Taylor-number criterion [Tan stopped swirl flow. The resulting predictions will be discussed in
and Thorpe, 2003]. The amplification theory model requires thecomparison with available experimental results.
initial conditions and the criterion to define detection of manifest
convection. The frozen-time model is based on linear theory and THEORETICAL ANALYSIS
yields the critical time as the parameter. The energy method sug-
gests lower bounds on the experimental onset times. The amplifit. Governing Equations
cation theory and the energy method are quite popular, but they re- The system considered here is a Newtonian fluid confined in a
quire a large number of tedious computations. Even though the maxylinder of radius R. Let the axis of the inner cylinder be along the
vertical z'-axis under the cylindrical coordinatesgrz) and the
To whom correspondence should be addressed. corresponding velocities be U, V and W. The entire fluid/cylinder
E-mail: mckim@cheju.ac.kr system is assumed to be in an initial state of rigid-body rotation with
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Fig. 2. Primary-velocity profiles.
8 V0, N=1, V(t, 0)=0, Vi(t, R)=0. (4a, b, c)
E where D=0/or' and D=D'+1/r". Neitzel [1982a] obtained the exact
@ solution as

- Vo - J(BN) 2
Vo(T,r - exp(—Bi1), 5a

©) (1) =pg ==23 ZlEex-5i) (52)
@ wheref3 are the roots of
(@) 3(B)=0, (8D)
@ where Jdenotes Bessel functions of order i of the first kind. For

small time the velocity approaches the following complementary

error function:
t=0 0<t<t, te<t<tg

(b) Vo=1-y —erfob%, ©)

Fig. 1. Schematic views of the basic system considered here: (a) top whereu,=V/(RQ), r=r/R, y=(tr), andr=vt/R%. The instantaneous
view and (b) streamlines. base flow profile is shown in Fig. 2. Foe107, Eq. (6) approxi-
mates the exact solution (5) very well. Since the present study con-
cerns the deep-pool system of small time, Eq. (6) is used in the sta-

is impulsively stopped. The ensuing unsteady swirl flow shows the bility analysis. The problem is to find the dimensionless critical ime

state of spin-down. A schematic diagram of the present system |§ tgt?t? |r| it(ythSq%r;St%tn?s,f instability, which grows with time.

shown in Fig. 1. Due to the asymptotically unconditionally-stable -The typical disturbances which are observed experimentally are
characteristic of this flow the secondary motion disappears;after tWeII represented by

Such swirl flow encounters instabilities in the form of Taylor-Gértler

vortices and the governing equations of the flow field are expressed (U,, V,, P)=(u',v', p))coskz', (7a)

as

0w =0, (€]

a constant angular velocify Starting from time t=0, the cylinder

W,=w'sinkz, (7b)

where Kk is the wavenumber and the primed quantities representing
disturbance amplitudes are a function of r' and t. The two-dimen-
[pt sional perturbed quantities are periodic in the z'-direction. Under
linear theory the stability equations of amplitude functions are ob-

whereU, P,v andp represent the velocity vector, the dynamic pres- tained when w' and p' are eliminated. Under the deep-pool approx-
sure, the kinematic viscosity and the density, respectively. imation of smallr, whered/or+21/r=0/0r, the resulting dimension-

For the case of constant physical properties the primary-velocityess amplitude equations are represented by
field is represented:

o [p2-ye-1 gtBD'Z KR 2V k ®

yVvo—
ot =vD'D:V,, ©)

UDDHJ —;)DP+vD u, @

g).z _kz_la ._DV, ,

vat? = ©

with the following initial and boundary conditions, v
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and the no-slip boundary conditions at r'=R are ary-layer flow systems ad(./T, the dimensionless timeplays

dual roles of time and boundary-layer thickness. Now, the self-sim-
ilar stability equations are obtained in dimensionless form from Egs.
The requirement that all the velocity components be bound at r=Q12) and (13) as

results in

u=Du=v'=0 at r=R, (10a)

2_oe 1l o3 = 2y | = Vo 2 -
u=DDu=v'=0 at r=0 (10b) [(D ) +2(ZD aibr2a )}u 1—ya v (@
The derivation of all the above equations is described in detail by .. . 1 R R
Chandrasekhar [1961] and Neitzel [1982a]. g) a +23D5/ =2Ta(D-vou, (18)

The propagation theory employed to find the onset time of insta- _ _ . .
bility, i.e., the critical time.{ requires the assumption that in deep- where D=did, y=(,/T and &aJ/7 . Here Taand & have been

. . treated as eigenvalues and a is the dimensionless wavenumber (=kR)
pool systems of small time, the perturbed angular velocity compo-

nentv' is propagated mainly within the hydrodynamic boundary- in the z*direction. The proper boundary conditions are
layer thicknesg\((1./vt) at the onset of instability. The resuling  u'=Du'=v'=0 at=0, (19a)
scale relations for perturbed quantities from Eq. (2) are given by

u'=DA'=v'=0 as(— . (19b)
v% D%v‘, (1) Now;, the minimum value of Tahould be found in the plot of Ta
A vs. & under the principle of the exchange of stabilities. In other words,
yYor, v 12) the minimum value of, i.e., 1, and its corresponding wavenum-
A Y ber, @ should be obtained for a given Re. Since time has been frozen

by lettingd(-)0r=0 under the frame of coordinateand{ instead

from the balances among acting forces (viscous, centrifugal, ang r andy; the propagation theory may be called the relaxed frozen-
inertial). Now, the following relation between dimensionless ampli- e model by treating as the parameter, bt it involves the time
tudes of u' andt' is obtained in dimensionless form: dependency implicitly.

3. Solution Procedure

To find eigenvalues and eigenfunctions for differential equations,
) ) ) . several methods such as compound matrix method and shooting
whered(=/VRL./T) is the usual dimensionless boundary-layer thick- nethod are proposed [Straughan, 1992]. In the present study the
ness. Here wal/(R'Q) andv=2v/(RQ). They are the nondimen-  giapiity Eqs. (17)-(19) are solved by employing the latter method.
sional velocity perturbations, which were used by Chandrasekhaf, orqer to integrate these stability equations the proper values of
['196.1], and Chen and Kirchner [19?1]. Now, the following rela- D, D’ and DV at¢=0 are assumed for a givénSince the sta-
tion is produced from the above relations: bility equations and their boundary conditions are all homogeneous,

Ta U (@w/or)-v, 14) the value of B’ (0) can be assigned arbitrarily and the value of the

X parameter Tds assumed. This procedure can be understood easily

where Ta=7**R¢ and =u/r. Here Re and Tarre the Reynolds  py taking into account the characteristics of eigenvalue problems
number and the Taylor number (or Gértler number), based on thesiraughan, 1992). After all the values/aD are provided, this ei-

5552 O, 13)

boundary-layer thickness, respectively: genvalue problem can proceed numerically.
OR’ AZA Integration is performed frof=0 to a fictitious upper bound-
_ - _ Vol _ .
Re==""Ta =7 ~Ax- (15 ary with the fourth order Runge-Kutta-Gill method. If the guessed

values of Tg D’u'(0) and DVW0) are correct, 'uDU" and v will
where Tais the Taylor number based on the Rayleigh thicknessvanish at the axis of rotation. Since disturbances decay exponen-
(/vt). This has been used in the spin-up problem [Otto, 1993]. tially outside the boundary-layer thickness, the incremental change

Now, for small time we introduce the similarity variafey/r") of Td also decays fast with increasing a fictitious outer boundary
and assume that dimensionless amplitude functions of disturbancesickness. This behavior enables us to extrapolate the eigenvalue to
have the forms of the axis of rotation. A typical stability curve is shown in Fig. 3(a)

o - and the minimun Tavalue is found to be 28.80 with its corre-

(@ 9. mm T Q. TV (O (16) sponding avalue of 0.68.
which satisfies the above relations. We set n=0. This means that
the amplitude function v is a function ¢fonly by following the RESULTS AND DISCUSSION

behavior of yfor smallt, as shown in Eq. (6). The case of n<0 is
not rational since v~ ast—0. For 20, the case of n=0 yields For the limitig case af—0, the stability criteria under the single
the fastest growing disturbances, i.e., the mimimum Reynolds nummode of instability have been obtained from the propagation the-
ber. A similar treatment can be found in problems of transient Bénardary. The critical conditions from Fig. 3(a) can be converted into
type convection [Choi et al., 1998; Kang et al., 2000]. Furthermore,
the relation of Tdalconstant for large Re is shown even in theoreti-
cal results from the energy method [Neitzel, 1982a]. At this critical condition the profiles of amplitude functions are fea-
By the above reasoning we setui) and v=\({). For bound-  tured in Fig. 3(b). The critical time to mark the onset of a fastest

1.=9.40Re&* and a=0.22R& asTt—0. (20)

Korean J. Chem. Eng.(Vol. 21, No. 4)



770 M. C. Kim and C. K. Choi

101 T T T T T 10;- T L T N | rororrTT
. Re=10"
laminar base flow
............ conceptual
10° unstable 3 ~
g
=
g é— U -
Eir 28.80 e
stable =
10' | e )
©=4.36x10"
T =1.74x10°
0.68 : ) )
10 1 1 1 1 1 10 - + . "““7: L L ““"74 ‘4
0.0 05 1.0 15 20 25 30 10 10° 10 10
a T
Fig. 4. Typical conceptual diagram of temporal behavior of torque.
1.0
u 3 1 T AL LA |
A e 0t e A v [ theoretical predictions
il ] - present T
~§ ‘ ' e present 4t 3
2= ; T e energy method (z )
§ 06 | - v~ energy method (7))
g 107 g- . -
S i .
= 04 i . - [ T .
g 107 3 e . <
E ..
i - 4 [
‘ 0 b experimental data i
‘ E ® Futenuer (1972) 3
0.0
0 15
c 10° L : L L
107 10 10
(b) Re
Fig. 3. Instability conditions for small time of ,—0 from the prop- Fig. 5. Comparison of predictions of characteristic times with avail-
agation theory: (a) marginal stability curve and (b) ampli- able experimental data.

tude profiles at T=T..

of rapid heating in horizontal fluid layers. This relation has been

growing instability decreases with increasing Re. It is known thatshown in predictions obtained from the propagation theory for large-
disturbances of the angular velocity are confined mainly within thePrandtl systems [see the work of Choi et al., 1998]. For the spin-up
hydrodynamic boundary layer of the primary flow (see Fig. 2). Thesystem, based on the amplification theory, Chen and Kirchner [1971]
same trend is also shown in Rayleigh-Bénard problems [Yang anteported a similar trend. Their results show that the characteristic
Choi, 2002; Kim et al., 2002]. time 1, at which disturbances first tend to grow is about one-fourth

Now, the above results are compared with the available experief the timer, at which convective motion is clearly observable ex-
mental data [Euteneuer, 1972] and also predictions. Experimentallyperimentally. All the above-mentioned models imply that a growth
secondary motion was observed af. tNeitzel and Davis [1980]  period for disturbances to grow is required until they are detected ex-
and Neitzel [1982a] employed the energy method, where the timperimentally. Therefore, it seems evident that the predicted onset time
evolution of the volume-integrated kinetic energy of disturbanced, is smaller than the detectignThis means that a fastest growing
for a given wavelength was monitored. They suggested a strongiode of instabilities, which set in at d=will grow with time until
stability limit &, up to which the kinetic energy of a most danger- manifest motion is first detected experimentally. This conceptual
ous mode of disturbances should decay and a marginal stability limitehavior of torque is illustrated in Fig. 4. The condition (20) yields
t.,, from which the kinetic energy exceeds the assumed, initial kinetia,=4.36x10" for Re=10as shown in Fig. 4. Linear theory is applied
energy. Starting from tgtthe kinetic energy increases with time. up to 70, from which the flow profile deviates from base flow
Their concept of stability limit is well summarized in Fig. 1 of Neitzel and therefore, manifest convection can be observedrgiir,.
[1982a]. The corresponding dimensionless timemndr,, are com-  The present predictions are consistent with the experimental data
pared withr, andt, in Fig. 4. For transient instability problems on for Re>1,000 as shown in Fig. 5 where we infer upper bounds of
thermal convection, Foster [1969] commented that with correct dit, by noting the earliest time for which wavelength data are pre-
mensional relations the relationmfldr, would be kept for the case  sented in Fig. 3 of Euterneuer’s [1972]. In Fig. 6 the predicted cri-
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F ®  cxperiments [Eutenuer, 1972] 3 Td : Taylor number based on boundary-layer thickné4Re

(U, V, W) : velocities in cylindrical coordinates

(u, v, w) : dimensionless velocity disturbances in cylindrical coor-
dinates

(u', v, w') : velocity disturbance amplitudes in cylindrical coordi-
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(r, 6, 2) : dimensionless cylindrical coordinates
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will be continued. This viewpoint is also seen in the results of the : inlet conditions
energy method. 0 :basic quantities

It is known that the propagation theory, which is based on selfl : perturbation quantities
similar transformation and normal mode analysis, is a powerful methe : critical conditions

od to predict the stability criteria reasonably well in simple systems,

hydrodynamic or thermal. But its validity should be justified in the Superscript

future by employing the numerical method to take the full nonlin-*  : transformed quantities

ear effects in Eg. (2) into the instability analysis like Choi et al.'s
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