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Abstract−The onset of hydrodynamical instability induced by impulsive spin-down to rest in a cylinder containing
a Newtonian fluid is analyzed by using propagation theory. It is well-known that the primary transient swirl flow is
laminar, but with initial high velocities secondary motion sets in at a certain time. The dimensionless critical time τc

to mark the onset of instability is presented here as a function of the Reynolds number Re. Available experimental data
indicate that for large Re deviation of the velocity profiles from their momentum diffusion occurs starting from a certain
time τ≈4τc. This means that secondary motion is detected at this characteristic time. It seems evident that during
τc≤τ≤4τc, secondary motion is relatively very weak and the primary diffusive momentum transfer is dominant.
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INTRODUCTION

It is well-known that in the primary laminar flows along con-
cavely curved walls, the destabilizing action of the centrifugal forces
can produce secondary motion in the form of vortices. The related
hydrodynamical instabilities usually lead to Taylor vortices in the
flow between rotating concentric cylinders or Görtler ones in the
boundary layer flow. The instability problem of transient laminar
swirl flow in a cylinder is closely related to that of Taylor-Görtler
vortices. The onset of instability caused by spin-down, when a ro-
tating liquid-filled cylinder is suddenly brought to rest, was first in-
vestigated experimentally by Euteneuer [1972]. The initial laminar
flow evolves into a secondary flow pattern which consists of a series
of Taylor-like vortices. This kind of secondary flow plays an impor-
tant role in mixing in a vertical Bridgman crystal growth system
where the crucible is rotated to improve mixing [Yeckel and Derby,
2000]. In this transient boundary-layer system the critical time tc to
mark the onset of secondary motion becomes an important question.

A related instability analysis has been conducted by using the
energy method [Neitzel and Davis, 1980; Neitzel, 1982a] and also
by employing direct numerical simulation [Neitzel and Davis, 1981].
A similar stability problem, where a fluid is filled between the two
concentric cylinders and the rotation of the inner cylinder is impul-
sively started from rest, i.e., the spin-up problem, has been ana-
lyzed by the amplification theory [Chen and Kirchner, 1971], the
frozen-time model [Chen and Kirchner, 1971], the energy method
[Neitzel, 1982b] and the maximum-Taylor-number criterion [Tan
and Thorpe, 2003]. The amplification theory model requires the
initial conditions and the criterion to define detection of manifest
convection. The frozen-time model is based on linear theory and
yields the critical time as the parameter. The energy method sug-
gests lower bounds on the experimental onset times. The amplifi-
cation theory and the energy method are quite popular, but they re-
quire a large number of tedious computations. Even though the max-

imum-Taylor-number criterion is the simplest one, it seems to lack
physical insights. These models take advantage of the similarity
between Taylor instability and Rayleigh-Bénard instability.

Another model to analyze time-dependent convective instability
problems is propagation theory [Choi et al., 1998; Kim et al., 2002],
which deals with thermal instability problems of developing, non-
linear temperature profiles in rapidly heated systems. In propagation
theory, any kind of arbitrariness such as the initial conditions and
the criterion to define detection of manifest convection and severe
calculation burden is not required. Therefore, propagation theory
can be said to be a deterministic and relatively simple method. This
model assumes that at t=tc infinitesimal temperature disturbances
are propagated mainly within the thermal penetration depth ∆T and
with this length scaling factor all the variables and parameters hav-
ing the length scale are rescaled. In a usual deep-pool conduction
system of ∆T∝ , the most important parameter becomes the time-
dependent Rayleigh number, which is yielded by replacing the length
scale in the Rayleigh number with ∆T. Here α is the thermal diffusiv-
ity. The resulting stability criteria have compared well with experi-
mental data of various systems such as solidification [Hwang and
Choi, 1996], Marangoni-Benard convection [Kang and Choi, 1997;
Kang et al., 2000] and Benard convection in porous media [Yoon
and Choi, 1989].

Here we will extend the propagation theory, which has been em-
ployed to analyze time-dependent diffusive problems, to the hydro-
dynamical instability induced by an aforementioned impulsively-
stopped swirl flow. The resulting predictions will be discussed in
comparison with available experimental results.

THEORETICAL ANALYSIS

1. Governing Equations
The system considered here is a Newtonian fluid confined in a

cylinder of radius R. Let the axis of the inner cylinder be along the
vertical z'-axis under the cylindrical coordinates (r', θ, z') and the
corresponding velocities be U, V and W. The entire fluid/cylinder
system is assumed to be in an initial state of rigid-body rotation with
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a constant angular velocity Ω. Starting from time t=0, the cylinder
is impulsively stopped. The ensuing unsteady swirl flow shows the
state of spin-down. A schematic diagram of the present system is
shown in Fig. 1. Due to the asymptotically unconditionally-stable
characteristic of this flow the secondary motion disappears after tf.
Such swirl flow encounters instabilities in the form of Taylor-Görtler
vortices and the governing equations of the flow field are expressed
as

(1)

(2)

where U, P, ν and ρ represent the velocity vector, the dynamic pres-
sure, the kinematic viscosity and the density, respectively.

For the case of constant physical properties the primary-velocity
field is represented:

(3)

with the following initial and boundary conditions,

V0(0, r)=rΩ, V0(t, 0)=0, V0(t, R)=0. (4a, b, c)

where D'=∂/∂r' and D'*=D'+1/r'. Neitzel [1982a] obtained the exact
solution as

(5a)

where βi are the roots of

J1(βi)=0, (5b)

where Ji denotes Bessel functions of order i of the first kind. For
small time the velocity approaches the following complementary
error function:

(6)

where ν0=V0/(RΩ), r=r'/R, y=(1−r), and τ =νt/R2. The instantaneous
base flow profile is shown in Fig. 2. For τ ≤10−3, Eq. (6) approxi-
mates the exact solution (5) very well. Since the present study con-
cerns the deep-pool system of small time, Eq. (6) is used in the sta-
bility analysis. The problem is to find the dimensionless critical time
τc to mark the onset of instability, which grows with time.
2. Stability Equations

The typical disturbances which are observed experimentally are
well represented by

(U1, V1, P1)=(u', ν ', p')coskz', (7a)

W1=w'sinkz', (7b)

where k is the wavenumber and the primed quantities representing
disturbance amplitudes are a function of r' and t. The two-dimen-
sional perturbed quantities are periodic in the z'-direction. Under
linear theory the stability equations of amplitude functions are ob-
tained when w' and p' are eliminated. Under the deep-pool approx-
imation of small τ, where ∂/∂r+1/r≈∂/∂r, the resulting dimension-
less amplitude equations are represented by

(8)

(9)
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Fig. 1. Schematic views of the basic system considered here: (a) top
view and (b) streamlines.

Fig. 2. Primary-velocity profiles.
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and the no-slip boundary conditions at r'=R are

u'=D'
*u'=ν '=0 at r'=R, (10a)

The requirement that all the velocity components be bound at r'=0
results in

u'=D'D'
*u'=ν '=0 at r'=0 (10b)

The derivation of all the above equations is described in detail by
Chandrasekhar [1961] and Neitzel [1982a].

The propagation theory employed to find the onset time of insta-
bility, i.e., the critical time tc, requires the assumption that in deep-
pool systems of small time, the perturbed angular velocity compo-
nent ν ' is propagated mainly within the hydrodynamic boundary-
layer thickness ∆(∝ ) at the onset of instability. The resulting
scale relations for perturbed quantities from Eq. (2) are given by

(11)

(12)

from the balances among acting forces (viscous, centrifugal, and
inertial). Now, the following relation between dimensionless ampli-
tudes of u' and ν ' is obtained in dimensionless form:

(13)

where δ(=∆/R∝ ) is the usual dimensionless boundary-layer thick-
ness. Here u=νu'/(R3Ω2) and ν =2ν'/(RΩ). They are the nondimen-
sional velocity perturbations, which were used by Chandrasekhar
[1961], and Chen and Kirchner [1971]. Now, the following rela-
tion is produced from the above relations:

Ta*u*(∂ν0/∂r)~ν, (14)

where Ta*=τ 3/2Re2 and u*=u/τ. Here Re and Ta* are the Reynolds
number and the Taylor number (or Görtler number), based on the
boundary-layer thickness, respectively:

(15)

where Ta* is the Taylor number based on the Rayleigh thickness
( ). This has been used in the spin-up problem [Otto, 1993].

Now, for small time we introduce the similarity variable ζ(=y/τ1/2)
and assume that dimensionless amplitude functions of disturbances
have the forms of

[u(τ, ζ), ν(τ, ζ)]=[τ n+1u*(ζ), τ nν*(ζ)], (16)

which satisfies the above relations. We set n=0. This means that
the amplitude function v is a function of ζ only by following the
behavior of v0 for small τ, as shown in Eq. (6). The case of n<0 is
not rational since v*

ç∞ as τç0. For n≥0, the case of n=0 yields
the fastest growing disturbances, i.e., the mimimum Reynolds num-
ber. A similar treatment can be found in problems of transient Bénard-
type convection [Choi et al., 1998; Kang et al., 2000]. Furthermore,
the relation of Ta* constant for large Re is shown even in theoreti-
cal results from the energy method [Neitzel, 1982a].

By the above reasoning we set u=τu*(ζ) and v=v*(ζ). For bound-

ary-layer flow systems of δ∝ , the dimensionless time τ plays
dual roles of time and boundary-layer thickness. Now, the self-sim-
ilar stability equations are obtained in dimensionless form from Eqs.
(12) and (13) as

(17)

(18)

where D=d/dζ, y=ζ  and a*=a . Here Ta* and a* have been
treated as eigenvalues and a is the dimensionless wavenumber (=kR)
in the z'-direction. The proper boundary conditions are

u*=Du*=v*=0 at ζ=0, (19a)

u*=D2u*=v*=0 as ζç∞. (19b)

Now, the minimum value of Ta* should be found in the plot of Ta*

vs. a* under the principle of the exchange of stabilities. In other words,
the minimum value of τ, i.e., τc, and its corresponding wavenum-
ber, ac, should be obtained for a given Re. Since time has been frozen
by letting ∂(·)/∂r≡0 under the frame of coordinates τ and ζ instead
of τ and y, the propagation theory may be called the relaxed frozen-
time model by treating τ as the parameter, but it involves the time
dependency implicitly.
3. Solution Procedure

To find eigenvalues and eigenfunctions for differential equations,
several methods such as compound matrix method and shooting
method are proposed [Straughan, 1992]. In the present study the
stability Eqs. (17)-(19) are solved by employing the latter method.
In order to integrate these stability equations the proper values of
D2u*, D3u* and Dv* at ζ=0 are assumed for a given a*. Since the sta-
bility equations and their boundary conditions are all homogeneous,
the value of D2u*(0) can be assigned arbitrarily and the value of the
parameter Ta* is assumed. This procedure can be understood easily
by taking into account the characteristics of eigenvalue problems
[Straughan, 1992]. After all the values at ζ=0 are provided, this ei-
genvalue problem can proceed numerically.

Integration is performed from ζ=0 to a fictitious upper bound-
ary with the fourth order Runge-Kutta-Gill method. If the guessed
values of Ta*, D3u*(0) and Dv*(0) are correct, u*, D2u* and v* will
vanish at the axis of rotation. Since disturbances decay exponen-
tially outside the boundary-layer thickness, the incremental change
of Ta* also decays fast with increasing a fictitious outer boundary
thickness. This behavior enables us to extrapolate the eigenvalue to
the axis of rotation. A typical stability curve is shown in Fig. 3(a)
and the minimun Ta*-value is found to be 28.80 with its corre-
sponding a* value of 0.68.

RESULTS AND DISCUSSION

For the limitig case of τç0, the stability criteria under the single
mode of instability have been obtained from the propagation the-
ory. The critical conditions from Fig. 3(a) can be converted into

τc=9.40Re−4/3 and ac=0.22Re2/3 as τç0. (20) 

At this critical condition the profiles of amplitude functions are fea-
tured in Fig. 3(b). The critical time τc to mark the onset of a fastest
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growing instability decreases with increasing Re. It is known that
disturbances of the angular velocity are confined mainly within the
hydrodynamic boundary layer of the primary flow (see Fig. 2). The
same trend is also shown in Rayleigh-Bénard problems [Yang and
Choi, 2002; Kim et al., 2002].

Now, the above results are compared with the available experi-
mental data [Euteneuer, 1972] and also predictions. Experimentally,
secondary motion was observed at t=t0. Neitzel and Davis [1980]
and Neitzel [1982a] employed the energy method, where the time
evolution of the volume-integrated kinetic energy of disturbances
for a given wavelength was monitored. They suggested a strong
stability limit ts, up to which the kinetic energy of a most danger-
ous mode of disturbances should decay and a marginal stability limit
tm, from which the kinetic energy exceeds the assumed, initial kinetic
energy. Starting from t=ts, the kinetic energy increases with time.
Their concept of stability limit is well summarized in Fig.1 of Neitzel
[1982a]. The corresponding dimensionless times, τm and τs, are com-
pared with τc and τo in Fig. 4. For transient instability problems on
thermal convection, Foster [1969] commented that with correct di-
mensional relations the relation of τo 4τc would be kept for the case

of rapid heating in horizontal fluid layers. This relation has been
shown in predictions obtained from the propagation theory for large-
Prandtl systems [see the work of Choi et al., 1998]. For the spin-up
system, based on the amplification theory, Chen and Kirchner [1971]
reported a similar trend. Their results show that the characteristic
time τi at which disturbances first tend to grow is about one-fourth
of the time τo at which convective motion is clearly observable ex-
perimentally. All the above-mentioned models imply that a growth
period for disturbances to grow is required until they are detected ex-
perimentally. Therefore, it seems evident that the predicted onset time
tc is smaller than the detection to. This means that a fastest growing
mode of instabilities, which set in at t=tc, will grow with time until
manifest motion is first detected experimentally. This conceptual
behavior of torque is illustrated in Fig. 4. The condition (20) yields
τc=4.36×10−5 for Re=104 as shown in Fig.4. Linear theory is applied
up to τ τo from which the flow profile deviates from base flow
and therefore, manifest convection can be observed at τ=τo 4τc.
The present predictions are consistent with the experimental data
for Re>1,000 as shown in Fig. 5 where we infer upper bounds of
to by noting the earliest time for which wavelength data are pre-
sented in Fig. 3 of Euterneuer’s [1972]. In Fig. 6 the predicted cri-≅

≅
≅

Fig. 3. Instability conditions for small time of τcç0 from the prop-
agation theory: (a) marginal stability curve and (b) ampli-
tude profiles at τ=τc.

Fig. 4. Typical conceptual diagram of temporal behavior of torque.

Fig. 5. Comparison of predictions of characteristic times with avail-
able experimental data.
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tical wavelength (λc=2πR/ac) is compared with the experimental
ones given in Fig. 4 of Euterneuer [1972]. It seems evident that the
cell size is almost constant during tc≤t≤to( 4tc) but its radial growth
will be continued. This viewpoint is also seen in the results of the
energy method.

It is known that the propagation theory, which is based on self-
similar transformation and normal mode analysis, is a powerful meth-
od to predict the stability criteria reasonably well in simple systems,
hydrodynamic or thermal. But its validity should be justified in the
future by employing the numerical method to take the full nonlin-
ear effects in Eq. (2) into the instability analysis like Choi et al.’s
[2003] work on thermal convection.

CONCLUSION

The onset of a fastest growing, axisymmetric instability in tran-
sient swirl flow has been investigated by the propagation theory
which was originally devised for the problems in transient Benard-
like convection. The present predictions of τo 4τc to represent the
characteristic time first detection of manifest axisymmetric flow
compare well with available experimental data. It is interesting that
the propagation theory yields instability criteria compatible with
experimental observations in simple diffusive systems, hydrody-
namical or thermal, which involve a similarity variable.
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NOMENCLATURE

a : dimensionless wavenumber, kR
k : wavenumber
L : length of cylinder
P : pressure
p : dimensionless pressure disturbance
R : radius of cylinder

Re : Reynolds number, ΩR2/ν
T : torque
Ta* : Taylor number based on boundary-layer thickness, τ3/2Re2

(U, V, W) : velocities in cylindrical coordinates
(u, v, w) : dimensionless velocity disturbances in cylindrical coor-

dinates
(u', v', w') : velocity disturbance amplitudes in cylindrical coordi-

nates
(r', θ, z') : cylindrical coordinates
(r, θ, z) : dimensionless cylindrical coordinates

Greek Letters
α : thermal diffusivity
∆ : boundary-layer thickness
∆T : thermal boundary-layer thickness
δ : dimensionless boundary-layer thickness
ζ : dimensionless similarity variable, y/τ1/2

λ : wavelength, 2πR/a
ν : kinematic viscosity
τ : dimensionless time

Subscripts
i : inlet conditions
0 : basic quantities
1 : perturbation quantities
c : critical conditions

Superscript
* : transformed quantities
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